
ICPC Manila 2019

Solution Sketches

Problem A: Suffix Three

● Straightforward implementation
● .endsWith(...), or something similar.
● Or just implement yourself.

Payton Yao

Problem A: Suffix Three

● Taking a line, C++
a. getline(cin, s);

● Taking a line, Java
a. s = bufferedReader.readLine();
b. s = scanner.nextLine();

● Taking a line, Python
a. s = input()

Payton Yao

Problem A: Suffix Three

● Getting the last word, C++
a. while (cin >> s);
b. while (scanf("%s", s) != EOF);

Payton Yao

Problem A: Suffix Three

● Example:

if (s.endsWith(“po”)) ...

if (s.endsWith(“desu”) ||

 s.endsWith(“masu”)) ...

if (s.endsWith(“mnida”)) ...

Payton Yao

Problem A: Suffix Three

● Faster to code:

if (s.endsWith(“o”)) ...

if (s.endsWith(“u”)) ...

if (s.endsWith(“a”)) ...

Payton Yao

Problem A: Suffix Three

● Python one line:

print({'o': "FILIPINO",

 'u': "JAPANESE",

 'a': "KOREAN"}[input()[-1]])

Payton Yao

Problem A: Suffix Three

● No advanced machine learning algorithms
needed!

Payton Yao

Problem I: A Case By Case Basis

● Classify the letters as uppercase or lowercase.
● An example of a classification problem
● Which is a machine learning problem
● Advanced machine learning algorithms needed

○ Just kidding!

Kevin Atienza

Problem I: A Case By Case Basis
Kevin Atienza

● Encode all letters.
● Check everything.
● 52 letters to type.

Problem I: A Case By Case Basis
Kevin Atienza

● Encode upper ones only.
● Check which one matches.
● 26 letters to type.

Problem I: A Case By Case Basis
Kevin Atienza

● Compare the number of
black cells.

● The larger one is
uppercase… often.
○ Only need to type the

exceptions.

● 3 letters to type! G, J, Y

Problem I: A Case By Case Basis
Kevin Atienza

● if abs(first1 - first2) ≥ 2:
 return larger

● if last1 ≠ last2:
 return smaller

● if total1 ≠ total2:
 return larger

● 0 letters to type!

Problem M: Beingawesomeism

● If all P’s, impossible.
● Otherwise, can be done in 4 moves.
● Case analysis. Just need to know if 0, 1, 2, 3 or 4.

Kevin Atienza

Problem M: Beingawesomeism

● 0 if:
○ All A’s.

● 1 if:
○ At least one border has all A’s.
○ Otherwise, can be proven that > 1.

Kevin Atienza

Problem M: Beingawesomeism
● 2 if:

○ At least one corner A.
○ At least one full column or row of A’s.
○ Otherwise, can be proven > 2.

● 3 if:
○ At least one A in a border.
○ Otherwise, can be proven > 3.

● 4 otherwise.

Kevin Atienza

Problem D: Okkeika Ferry Co.

● Collapse connected components.
● Find smallest node in each component.
● Then greedy: Add the pair of components with the

most requests.
○ Add the ferry between their smallest nodes.

Payton Yao

Problem D: Okkeika Ferry Co.

● Collapse connected components.
● Find smallest node in each component.
● Then greedy: Add the pair of components with the

most requests.
○ Add the ferry between their smallest nodes.

● Gotcha: Disregard requests that are already
fulfilled.

Payton Yao

Problem D: Okkeika Ferry Co.

● If all requests already OK, just find the smallest
pair.
○ If no such pair (i.e., complete graph), impossible.

Payton Yao

Problem D: Okkeika Ferry Co.

● If all requests already OK, just find the smallest
pair.
○ If no such pair (i.e., complete graph), impossible.

● Gotcha: O(n+m+k) not allowed!
○ Should be O(m+k).
○ Only consider the mentioned nodes.

■ Except if all requests are already fulfilled.

Payton Yao

Problem H: Kirchhoff’s Current Loss

● Number theory?
● Sounds hard, so let’s ignore “integer” restriction

first.

Jared Asuncion

Problem H: Kirchhoff’s Current Loss

● If we’re not restricted to integers, then the optimal
cost to obtain r is linear in r.
○ That is, c*r for some c > 0.

● We need to find c for our circuit.

Jared Asuncion

Problem H: Kirchhoff’s Current Loss

● For a single resistor, c = 1.
● For series, c = min(c1, c2).
● For parallel, √c = √c1 + √c2

○ Can be shown with calculus.

● This shows that √c is always an integer.
○ Can be proven with induction.

Jared Asuncion

Problem H: Kirchhoff’s Current Loss

● √c is always an integer.
● Even stronger: WRT minimizing costs, the circuit is

equivalent to a parallel circuit with √c resistors!
○ Can be proven inductively.

● Thus, we can replace exactly √c resistors with a
resistance of √c*r (and the rest 0) to achieve r.

Jared Asuncion

Problem H: Kirchhoff’s Current Loss

● We can replace exactly √c resistors with a
resistance of √c*r (and the rest 0) to achieve r.

● But √c and √c*r are integers, so there’s an optimal
solution involving integers only.

● This also solves the integer case!

Jared Asuncion

Problem H: Kirchhoff’s Current Loss

● √c can be interpreted as shortest path/min cut:
○ Draw the circuit.
○ Then the shortest path from left to right is √c.

Jared Asuncion

Problem H: Kirchhoff’s Current Loss

● Needs some parsing.
● Just use any standard infix-to-postfix algorithm.
● eval(s.replace('*','Resistor()')

 .replace('S','+').replace('P','*'))

● Just kidding, that won’t work!
○ Why?

Jared Asuncion

Problem L: Jeremy Bearimy

● DP?
● There’s no obvious one, I think.

Kevin Atienza

Problem L: Jeremy Bearimy

● (Maximization) Observation:

Kevin Atienza

● Thus, one component must be all matched to the
other component.

● Also, this is the maximum possible contribution for
an edge.

● So, in the optimal solution, an edge contributes
min(size[left], size[right]) * weight.

● But the same is true for all edges!

Problem L: Jeremy Bearimy
Kevin Atienza

● Every edge contributes
min(size[left], size[right]) * weight in the optimal
solution.

● O(n): compute the sizes of all subtrees, then just
add up all contributions!

Problem L: Jeremy Bearimy
Kevin Atienza

Problem L: Jeremy Bearimy

● (Minimization) Observation:

Kevin Atienza

Problem L: Jeremy Bearimy

● Thus, an edge contributes at most 1 in the optimal
solution.

● Also, the parity of an edge’s contribution is fixed.
● So, in the optimal solution, an edge contributes

(size[left] mod 2) * weight.
● But the same is true for all edges!

Kevin Atienza

Problem L: Jeremy Bearimy

● Every edge contributes
(size[left] mod 2) * weight in the optimal solution.

● O(n): compute the parity of sizes of all subtrees,
then just add up all contributions!

Kevin Atienza

Problem E: Do You Wanna Build More Snowmen?

● Adjust allowed moves slightly: Only allow
“animating” the top of the stack.

● Can be shown equivalent, but slightly easier to
think about.

Kyle See

Problem E: Do You Wanna Build More Snowmen?

● It smells of DP, but what are the states?
● Typical DP approach seems to fail, since we can

stack arbitrarily many prefixes of words.

Kyle See

Problem E: Do You Wanna Build More Snowmen?

● Correct state: (substring, prefix of some word).
○ O(n3) states.

● Transition: The next letter in the word can be
anywhere in the substring.
○ Recurse on the two substrings.
○ O(n) transition.

● O(n4) overall. (actually, closer to O(n4/6).)

Kyle See

Problem C: JaBloo 11: Lord of Expansion

● Observation: “Can defeat” graph is acyclic.
● Thus, any selection of attacks can be fulfilled.

○ Lower levels attack first.

● For a fixed a, it’s just a maximum matching
between attackers and defenders.

Payton Yao

Problem C: JaBloo 11: Lord of Expansion

● Maximum matching? Max flow.
○ Make source s and sink t.
○ For each person p, make two nodes patt and pdef.
○ Add edge patt → qdef if p can defeat q.
○ Add s → patt with capacity a.
○ Add pdef → t with capacity 1.

Payton Yao

Problem C: JaBloo 11: Lord of Expansion

● Problem: Ω(V2) edges.
● Dinic?

○ No, doesn’t help.

● Push-Relabel?
○ No. Even worse.

● We seem forced to have
Ω(VE) runtime here.

Payton Yao

Problem C: JaBloo 11: Lord of Expansion

● We seem forced to have
Ω(VE) runtime.

● But we can reduce E !!

Payton Yao

Problem C: JaBloo 11: Lord of Expansion

● Analysis shows
E = O(Vk1/2).

● So overall, O(V2k1/2).
● TL generous enough to

allow E = O(Vk).
● Or overall, O(V2k).

○ i.e., I can’t break it :P

Payton Yao

Problem B: Miss Punyverse

● DP? Given subtree and # of regions, find the
maximum # of winning regions.

● Problem: Need to also “merge” with the topmost
component, so its “vote advantage” at the top
matters.

Payton Yao

Problem B: Miss Punyverse

● Greedy observation: It is optimal to maximize the #
of winning regions first, then maximize the vote
advantage of the root second.
○ Convince yourself that

■ (x winning regions, -∞ vote advantage)
○ is better than

■ (x-1 winning regions, +∞ vote advantage)

Payton Yao

Problem B: Miss Punyverse

● Convince yourself that
○ (x winning regions, -∞ vote advantage)

● is better than
○ (x-1 winning regions, +∞ vote advantage)

● The +∞ vote advantage, at best, can increase the
winning regions by 1, but we can already achieve
that even with (x, -∞).

Payton Yao

Problem B: Miss Punyverse

● So the DP now becomes: Given subtree and # of
regions, find the maximum # of winning regions,
and among all such possibilities, find the maximum
vote advantage of the root component.
○ Some edge cases to consider, e.g., don’t construct

size-0 partitions!

Payton Yao

Problem B: Miss Punyverse

● DP(node, #regions).
● Here, #regions ≤ size(node)
● Total transition for “node” is O(size(left)*size(right)).
● This is the DP pattern that looks like O(n3) but is

actually O(n2).

Payton Yao

Problem F: Marking the Territory

● “2D binary search”.
● First step: Identify which cells are markable.
● Second step: Find a “fast” way to mark it.

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells, then all cells

can be marked!

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells...

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:
○ If there are at least two same-parity cells, then all cells

can be marked!

● But how to do it “fast”?
○ Use some sort of “2D” binary search.
○ Several edge cases. We won’t discuss all of them here.

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is not a line:

Kyle See

Problem F: Marking the Territory

● If bounding box is a line:
○ Take the gcd of all distances, and remove all factors 2.
○ Then it’s clear that only multiples of this distance can be

marked.

Kyle See

Problem F: Marking the Territory

● If bounding box is a line:
○ Take the gcd of all distances, and remove all factors 2.
○ Then it’s clear that only multiples of this distance can be

marked.
○ Surprisingly, all multiples of this distance can be

marked!

Kyle See

Problem F: Marking the Territory

● For x > 3, the case with “x” marked cells is
reducible to “x-1” marked cells:
○ Construct the gcd of the first x-1, then replace the

middle x-2 cells with the gcd.

● Base cases:
○ 2 marked cells. Just binary search.
○ 3 marked cells. Also “binary search”, but a bit more

complicated.

Kyle See

Problem F: Marking the Territory

● Worst case number of moves:

Kyle See

Problem G: Guizzmo and the CSS

● You might think you need to construct complicated
regions and find some kind of shortest path
through it.

● Too complex! Also, too slow!

Tim Dumol

Problem G: Guizzmo and the CSS

● Crucial insight: If a laser blocks the shortest path,
then it blocks all paths.

Tim Dumol

Problem G: Guizzmo and the CSS

● Reason: Each straight
laser section only
intersects the shortest
path in at most 1 location,
so it separates the
endpoints into 2 regions.

Tim Dumol

Problem G: Guizzmo and the CSS

● Even on “bends”. If a
laser hits a bend, the
endpoints are still in
distinct regions, and
even worse, there are at
least 3 regions!

Tim Dumol

Problem G: Guizzmo and the CSS

● So the solution is simply all lasers that intersect
the shortest path!

● The lasers can now be considered independently!
○ It is crucial that laser sources are not on corners.

● The problem is reduced to just computing the
laser paths and intersecting with the shortest path.

● Shortest path is just Dijkstra + Geom. O(n3) is OK.

Tim Dumol

Problem G: Guizzmo and the CSS

● Computing laser paths, the “cheap” way: Scale to
make laser direction 45 degrees.

Tim Dumol

Problem G: Guizzmo and the CSS

● Then just walk.

Tim Dumol

● I call this the “poor man’s ray tracing algorithm”

Problem G: Guizzmo and the CSS

● The final step involves intersecting lasers and
shortest path.
○ O(laser_path_sections * shortest_path_sections)
○ Can be improved to

O(laser_path_sections + shortest_path_sections)
with another insight, involving the topology of the
room’s boundary (i.e., a circle), i.e., “interleaving”.

Tim Dumol

Problem K: Cut and Paste

● Represent S with a binary tree. Initially, completely
balanced.

Kevin Atienza

Problem K: Cut and Paste

● Represent S with a binary tree. Initially, completely
balanced.

● Then just simulate, until the tree becomes at least
x in size.

Kevin Atienza

Problem K: Cut and Paste

● For each node, store its size and number of
characters ≥ 2.

● Also, need to quickly be able to find the first
character ≥ 2.
○ O(height) operation, given the stored values.

Kevin Atienza

Problem K: Cut and Paste

● After finding the first character ≥ 2, split the tree
there, then duplicate/triplicate the right subtree.

Kevin Atienza

Problem K: Cut and Paste

● The height of the tree is always O(log x).
● Therefore, overall O(n log x) …..
● Any questions? Violent reactions?

Kevin Atienza

Problem K: Cut and Paste

● Well, maybe more like O(n (log x + D))
● where D = cost of duplicating a tree.

Kevin Atienza

Problem K: Cut and Paste

● Well, maybe more like O(n (log x + D))
● where D = cost of duplicating a tree.
● But if we use persistent trees, D becomes O(1) !!
● So overall, O(n log x).

Kevin Atienza

Problem K: Cut and Paste

● What happens when duplicating a persistent tree?

Kevin Atienza

Problem K: Cut and Paste

● Special case: count(“2”) = 2, count(“3”) = 0.
● Need to handle separately, string only grows

quadratically, not exponentially.
● There is a pattern.

Kevin Atienza

Problem J: Intergalactic Sliding Puzzle

● “Shortcuts” are basically subroutines.
● Create simpler operations, then combine into

more complex operations.

Kevin Atienza

Problem J: Intergalactic Sliding Puzzle

● Consider the “circular permutation”.
● Without the centermost column, you can rotate it,

but you can’t change it beyond that.
● Thus, the only significant operation is moving

across the center.

Kevin Atienza

Problem J: Intergalactic Sliding Puzzle

● This is its effect:

 1 2 3 4 5 6 7 1 2 3 E 5 6 7

13 12 11 E 10 9 8 13 12 11 4 10 9 8

Kevin Atienza

● Or: 1 2 3 4 5 6 7 8 9 10 11 12 13

 1 2 3 5 6 7 8 9 10 4 11 12 13

Problem J: Intergalactic Sliding Puzzle

● This is its effect:

 1 2 3 4 5 6 7 1 2 3 E 5 6 7

13 12 11 E 10 9 8 13 12 11 4 10 9 8

Kevin Atienza

● Or: 1 2 3 4 5 6 7 8 9 10 11 12 13

 1 2 3 5 6 7 8 9 10 4 11 12 13

Problem J: Intergalactic Sliding Puzzle

● This is its effect:

 1 2 3 4 5 6 7 1 2 3 E 5 6 7

13 12 11 E 10 9 8 13 12 11 4 10 9 8

Kevin Atienza

Problem J: Intergalactic Sliding Puzzle

● In other words, a 2k+1 rotation.
● This can be done anywhere.
● This, along with a full 4k+1 rotation, are the only

allowed operations.
● Both are even permutations, so odd permutations

are unsolvable.

Kevin Atienza

Problem J: Intergalactic Sliding Puzzle

● It turns out that even permutations are solvable!
One can construct a 3-cycle using six 2k+1
rotations.
○ Exercise left to the reader.
○ With full rotations, this 3-cycle can be done anywhere!

● It is a standard fact that even permutations are
decomposable into 3-cycles.

Kevin Atienza

Thank you!
● A. Suffix Three - Yao
● B. Miss Punyverse - Yao
● C. JaBloo 11: Lord of Expansion - Yao
● D. Okkeika Ferry Co. - Yao
● E. Do You Wanna Build More Snowmen? - See
● F. Marking the Territory - See
● G. Guizzmo and the CSS - Dumol
● H. Kirchhoff’s Current Loss - Asuncion
● I. A Case By Case Basis - Atienza
● J. Intergalactic Sliding Puzzle - Atienza
● K. Cut and Paste - Atienza
● L. Jeremy Bearimy - Atienza
● M. Beingawesomeism - Atienza

● Kevin Charles Atienza
○ Chief judge

● Kyle Stephen See
○ Chief tester

● Payton Robin Yao
● Jared Guissmo Asuncion
● Tim Joseph Dumol
● Marte Raphael Soliza
● Codeforces

○ Parallel round
○ Additional testing

